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Abstract

This paper discusses how optimal stopping theory can be used to determine

the price that governments should pay for (distressed) assets in case these are

nationalised. In addition, optimal stopping theory is used to indicate what

the return on these assets to the tax payer might be, depending on different

sell-back policies.

1 Introduction

Recently, debates have ensued on both sides of the Atlantic about different ways

of removing so-called “toxic assets” off the balance sheets of troubled banks. An

important issue in discussing such “toxic banks” (be it in a TARP setting as in

the US or a NAMA-like construction in the Republic of Ireland) is the size of the

“haircut” that the government should make in taking over these assets. In this paper

I argue that a good indication of the appropriate price that should be paid for assets

can be obtained by relying on optimal stopping theory.

The main argument underlying this paper is that a “fair” value for assets can be

found by analysing the following question: at what time would an investor decide to

buy the set of assets that the government is now required to take off the books of the

banks at a certain, given price? One can then determine the price that would induce

the investor to buy the assets immediately. Since the future value of the assets is

unknown one can use optimal stopping theory to solve this problem. The valuation

combines the familiar equivalent martingale approach and ambiguity. Ambiguity is

potentially an important feature in toxic asset valuation as the assets will be taken

off the market, after which no price signals will be observed and, therefore, the

underlying market valuation will be ambiguous.
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Once the assets have been taken off the banks’ books, a second question arises,

namely to set an appropriate price at which the assets can be sold back to the

market. There are several possible ways in which this can be done. Obviously, one

can take a myopic approach and leave it undecided at the time of creation of the

toxic bank. Alternatively, one can decide now at some principles and compute the

price that matches these principles. For example, one could set the price such that

the expected time of sale to the market equals a pre-specified date. Alternatively,

one can determine the price that should be set to guarantee that sale takes place

with a given probability within a given time frame. The advantage of determining

a sell-back price immediately instead of later is that one can immediately see what

the return to the tax payer is going to be. It is found in this paper that this return

is very likely to be substantially negative.

The paper is organised as follows. Section 2 summarises the standard approach

to valuing investment projects under uncertainty using optimal stopping theory. In

Section 3 I add ambiguity to the standard model. Section 4 discusses the appropriate

discount on distressed assets that should be obtained, whereas Section 5 analyses

the potential returns to the tax payer. Section 6, finally, concludes.

2 The Standard Real Options Model

Consider an investor who can buy a set of assets at a fixed price I > 0. Assume

that the payoffs accruing from the assets under consideration are uncertain. In this

paper uncertainty is modelled by a family of strong Markov processeswith state

space R+ on a probability space (Ω,F , Pv), endowed with a filtration (Ft)t≥0. For

each v ∈ R+ it is assumed that, under Pv, (Vt)t≥0 follows the stochastic differential

equation
dV

V
= µV dt + σV dz,

where (zt)t≥0 is a Pv-Wiener processes and V0 = v, Pv-a.s. It assumed that the

investor discounts future profits according to a process (Λt)t≥0, which follows the

GBM
dΛ

Λ
= −µΛdt + σΛdz.

That is, the discount factor is assumed to be perfectly correlated with the payoffs.

To ensure finite values I assume throughout that µV < µΛ + σΛσV .

Assuming that the assets are infinitely lived, the value of the assets to the investor

is the solution to the following standard optimal stopping problem,

F ∗(v) = sup
τ∈T

E
Pv

[

∫ ∞

τ
ΛtVtdt − ΛτI

]

,
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where T is the set of stopping times with respect to the filtration (Ft)t≥0. It can

now be shown (see, for example, Thijssen (2009)) that for each v ∈ R+ there exists

an equivalent probability measure Qv such that

F ∗(v) = sup
τ∈T

E
Qv

[

∫ ∞

τ
e−µΛtVtdt − e−µΛτI

]

,

where, under Qv, (Vt)t≥0 follows the GBM

dV

V
= (µV − σΛσV )dt + σV dz̃, (1)

(z̃t)t≥0 is a Qv-Wiener processes and V0 = v, Qv-a.s.

Standard arguments (see, for example, Øksendal (2000)) now tell us that the

optimal stopping time is

τ∗ = inf{t ≥ 0|Vt ≥ V ∗},

where

V ∗ =
β1

β1 − 1
(µΛ + σV σΛ − µV )I,

and β1 > 1 is the positive root of the quadratic equation

Q(β) ≡ 1

2
σ2

V β(β − 1) + (µV − σΛσV )β − µΛ = 0.

From Thijssen (2009) it follows that

∂V ∗

∂µV
< 0,

∂V ∗

∂σV
> 0,

∂V ∗

∂µΛ
> 0, and

∂V ∗

∂σΛ
> 0.

It is important to note that even though the threshold V ∗ is monotonically increasing

in σV , this does not imply that the probability of investment over a given time

interval is monotonically decreasing. This effect has been well-documented since

Sarkar (2000). An increase in volatility, namely, increases the probability of larger

jumps along the sample paths, which may offset the effect of a higher threshold.

For a full economic analysis of the impact of the market environment on in-

vestment, the discount factor will have to be modelled explicitly. Suppose that in

the financial market a risk-free asset and a (portfolio of possibly dividend paying)

risky asset(s) are traded, with price processes (Bt)t≥0 and (St)t≥0, respectively. In

addition, suppose that these price processes are governed by the SDEs

dB

B
= rdt, and

dS

S
= µSdt + σSdz,
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respectively.1 The asset S can be seen as a spanning asset for the cash-flows V .

If one, in addition, also assumes that there are no arbitrage opportunities, then

investors must discount risky payoffs according to a process (Λt)t≥0, such that

E
Pv [dΛB] = 0, and E

Pv [dΛS] = 0.

A straightforward application of Ito’s lemma immediately shows that (Λt)t≥0 follows

the GBM
dΛ

Λ
= −rdt − hSdz,

where hS = (µS − r)/σS is the Sharpe ratio of the spanning asset. In addition, it

is assumed that hS > (µV − r)/σV , so that r + hSσV − µV > 0 and all values are

finite.

It now follows that an increase in the market price of risk unequivocally delays

investment. In addition,

∂V ∗

∂σS
< 0,

∂V ∗

∂µS
> 0, and

∂V ∗

∂r
≷ 0.

So, an increase in the trend (variance) of the spanning asset delays (accelerates)

investment. In other words, the effect of trend and volatility of the spanning asset

is opposite to the effect of trend and volatility of the project’s cash-flows itself. The

effect of the interest rate on investment is ambiguous. This happens because the

interest rate enters both the trend and volatility of the discount factor, but with

opposite signs.

3 Adding Ambiguity

One of the problems with toxic banks is that the assets will not be traded on the

market anymore, which makes it difficult to gauge the true stochastic process un-

derlying the evolution of the value of the assets in question. In other words, the

investor is confronted with ambiguity regarding the risk-neutral measure Qv.

Experimental research shows that decision-makers are highly likely to be am-

biguity averse. In the continuous-time asset pricing literature, ambiguity aversion

has been introduced by Chen and Epstein (2002), following a line of research insti-

gated by Gilboa and Schmeidler (1989). This has been extended to the real options

literature by, among others, Nishimura and Ozaki (2007), Trojanowska and Kort

(2007), and Thijssen (2008). I assume that there is ambiguity around the trend

of (Vt)t≥0 under Qv, in (1) and that the investor uses a multiple prior set-up with

1If the risky asset is dividend paying, the dividend rate is assumed to be included in the trend

µS .
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maxmin preferences. For simplicity I assume that ambiguity arises throughout the

time horizon and that no learning takes place.2

The set of measures that is considered by the investor is denoted by PΘ
v , where

Θ is a set of density generators.3 Such a process (θt)t≥0 generates a new measure

Qθ
v via the Radon-Nikodym derivative dQθ

v/dQv = zθ
T , where T < ∞ is the final

time of the model. We have to be very careful here since density generators are only

properly defined over finite time intervals. For analytical convenience, however, one

would wish to apply the analysis to the extended real line. In what follows we will

assume that one can take T = ∞ without any problems.4

The set of density generators, Θ, is chosen such that all processes are what Ep-

stein and Schneider (2003) call IID: independently and indistinguishably distributed.

It has been shown by Chen and Epstein (2002) that PΘ is well-defined and that for

every X ∈ L 2(Ω,F , Qv), there exists Qθ∗
v ∈ PΘ

v such that for all t ∈ [0, T ],

E
Qθ

∗

v [X|Ft] = min
Q∈PΘ

v

E
Q[X|Ft].

In fact, as is shown in Nishimura and Ozaki (2007) this measure corresponds to the

upper-rim generator (θ∗t )t≥0, where

θ∗t = arg max{σV θt|θt ∈ Θt}.

From Girsanov’s theorem it immediately follows that under Qθ
v ∈ PΘ

v , the pro-

cess
(

zθ
t

)

t≥0
, defined by

zθ
t = z̃t +

∫ t

0
θsds,

is a Qθ
v-Brownian motion and that, under Qθ

v, the process (Vt)t≥0 follows the diffusion

dV

V
= µθ

V (t)dt + σV dzθ
t ,

where
(

zθ
t

)

t≥0
is a Qθ

v Brownian motion. Furthermore,

µθ
V (t) = µV − σV (hS − θt).

2The latter is a reasonable assumption since no market price is observed for the assets while

they are out of the public domain. The former assumption is a bit more tricky. After the assets

are brought back to the market, namely, ambiguity technically resolves. This can lead to different

results. See, for example, the discussion in Trojanowska and Kort (2007).
3A process (θt)t≥0

is a density generator if it is such that the process
(

Mθ
t

)

t≥0
, where

dMθ
t

Mθ
t

= −θtdz̃t, zθ

0 = 1,

is a Qv-martingale.
4See Nishimura and Ozaki (2007) and Thijssen (2008) for some reasons why this might not be

such a bad thing to do.
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Following the maxmin approach to ambiguity (cf. Gilboa and Schmeidler (1989)),

the problem that is faced by the investor is to determine the value

F ∗(v) = sup
τ∈T

min
Q∈PΘ

v

E
Q
[

e−rτ
(

∫ ∞

τ
e−r(t−τ)Vtdt − I

)]

= sup
τ

min
θ∈Θ

E
Qθ

v

[

e−rτ
(

∫ ∞

τ
e−r(t−τ)Vtdt − I

)]

= sup
τ

E
Qθ

∗

v

[

e−rτ
( Vτ

r + σV (hS + κ) − µV
− I
)]

,

(2)

where the final equality holds under the IID assumption.

If we restrict attention to so-called κ-ignorance, where Θt = [−κ, κ], for some

κ > 0 and all t ≥ 0, then problem (2) is solved by the optimal stopping time

τ∗ = inf{t ≥ 0|Vt ≥ V ∗},

where

V ∗ =
β1

β1 − 1
[r + σV (hS + κ) − µV ]I,

and β1 > 1 is the positive root of the quadratic equation

Q(β) ≡ 1

2
σ2

V β(β − 1) + (µV − σV (hS + κ))β − r = 0.

Note that the trigger V ∗ is monotonically increasing in κ so that investment is

decreasing in ambiguity.

4 A Reasonable Discount on Distressed Assets

In the preceding analysis the optimal time of an asset purchase has been derived,

based on the assumption that the costs of the purchase are known a priori and

given by I > 0. The problem with a toxic-bank-like vehicle is that the government

does not have the luxury to wait to invest. Also, the cost of the purchase is not

exogenous, but has to be determined by the government. The preceding analysis

can be used to find those costs. After all, the government should pay a price I,

such that it is optimal to invest immediately, i.e. such that v = V ∗. So, the implied

current value of the assets is

I∗ =
β1 − 1

β1

v

r + σV (hS + κ) − µV
.

Note that this value equals a fraction of the current present value (adjusted for risk

and ambiguity) of the payoffs accruing from the assets.5 This discount arises due

5Since β1 > 1, it holds that (β1 − 1)/β1 < 1.
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to the uncertainty (and ambiguity) in the payoff process. This implies that the

“haircut”, denoted by ζ, equals

ζ = 1 − β1 − 1

β1
=

1

β1
.

One can easily obtain that

∂I∗

∂µV
> 0,

∂I∗

∂σV
< 0,

∂I∗

∂σS
> 0,

∂I∗

∂µS
< 0,

∂I∗

∂κ
< 0,

∂I∗

∂r
≷ 0,

and that

∂ζ

∂µV
> 0,

∂ζ

∂σV
≷ 0,

∂ζ

∂σS
> 0,

∂ζ

∂µS
< 0,

∂ζ

∂κ
< 0,

∂ζ

∂r
≷ 0.

Interestingly, the haircut ζ is non-monotonous in the volatility underlying the

assets. The implied current value of the assets, however, is monotonically decreasing

in the underlying volatility. This makes sense as a higher volatility implies a higher

threshold and a higher “hurdle rate” for an investor to buy the assets. The non-

monotonicity in σV of the haircut is related to the well-known fact that higher

volatility does not necessarily lead to later exercising of the option to buy (see, for

example, Sarkar (2000)). So, even though the fair price is lower, it may be that the

government can offload the assets sooner. This happens because a higher volatility

increases the likelihood of larger jumps in the sample paths.

An increase in the trend (volatility) of the spanning asset reduces (increases)

both the haircut and the fair price. In other words, the effect of trend and volatility

of the spanning asset is opposite to the effect of trend and volatility of the asset’s

fair price itself. The effect of the risk-free rate on both the haircut and the fair

price is ambiguous. This happens because the risk-free rate enters both the trend

and volatility of the discount factor, but with opposite signs. To get some feeling

for the magnitude of the effect of the parameters on the fair price and the haircut,

see Figures 1 and 2 for a graphical representation. Here I have taken µS = 0.06,

σV = 0.15, µV = 0.005, κ = 0.02, and v = 10.

5 The Return for the Tax Payer

Once the assets have been bought one can think about how and when to return them

to the market. Obviously one could simply state a price and wait until an investor

wishes to buy them. We can then compute, for example, the expected holding time

or the probability that the assets will be sold before a certain date. Alternatively,

one can specify a desired expected time of sale or a desired probability of sale and
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Figure 1: Fair price (left panel) and haircut (right panel).

then deduce the appropriate price one can expect to get for the assets. The latter

will be the approach taken in this section. For further reference define

µ̄ = µV − σV (hS + κ) − 1
2σ2

V .

Two cases need to be considered. If µ̄ > 0, then the threshold V ∗ is reached

Qθ∗
v -a.s. for any level of sunk costs I. The government could establish a desired

expected time of sales, EQθ
∗

v [τ ] and then determine the price it should ask for the

assets. From Øksendal (2000) one finds that

E
Qθ

∗

v [τ ] =
log(V ∗/v)

µ̄
⇐⇒ I =

β1 − 1

β1

v

δ
exp

(

µ̄EQθ
∗

v [τ ]
)

.

This implies that the rate of return to the tax payer equals

ρ =
I − I∗

I∗
= exp

(

µ̄EQθ
∗

v [τ ]
)

− 1.

For a numerical example, see Figure 3. Here I have taken µS = 0.06, σV = 0.15,

µV = 0.005, σV = .01, κ = 0.02, and v = 10.

If µ̄ < 0, then the threshold V ∗ is not reached Qθ∗
v -a.s. and, therefore, EQθ

∗

v [τ ]

does not exist. In this case, however, the government can fix the probability p with

which it wishes the threshold V ∗ to be reached and then determine the price it

should ask for the assets. From Øksendal (2000) one finds that

p =
( v

V ∗

)γ
⇐⇒ I =

β1 − 1

β1

v

δ
p−1/γ ,

where γ = 1 − 2(µV − σV (hS + κ))/σ2
V . This implies that the rate of return to the

tax payer equals

ρ =
I − I∗

I∗
= p−1/γ − 1.
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Figure 2: Fair price (left panel) and haircut (right panel).

For a numerical example, see Figure 4. Here I have taken µS = 0.06, σV = 0.15,

µV = 0.005, σV = .2, κ = 0.02, and v = 10.

Finally, the government can set a time horizon within which sale should take

place with a given probability. The appropriate selling price can then be found

using the formula (cf. Harrison (1985))

Qθ∗
v

(

sup
0≤t≤T

Vt ≥ V ∗

)

=Φ

(− log(V ∗/v) + µ̄T

σV

√
T

)

+
(V ∗

v

)

2µ̄
σ2

V Φ

(− log(V ∗/v) − µ̄T

σV

√
T

)

,

where µ̄ = µV − σV (hS + κ) − .5σ2
V . For a numerical example, see Figure 5. Here

I have taken µS = 0.06, σS = 0.15, µV = 0.005, r = .01, κ = 0, and v = 10. The

target probability of a sale taking place is taken to be p ∈ {.5, .75, .95} over a time-

frame of T = 10 years. A few striking observations can be made. First of all, the

selling price is non-monotonic in the volatility σV . For lower values of σV , the price

that should be charged should actually be increasing in σV . Secondly, the return to

the taxpayer is increasing in σV and negative for lower values of volatility. In fact,

in all three cases the return to the tax payer is about -82% for σV = .05. For higher

values of volatility the return depends starkly on the sale probability that is set by

the government. For a sale probability of 50%, the return can go up to 20%. For a

sale probability of 95% the return over a 10-year period is barely positive.
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Figure 3: Selling price (left panel) and return (right panel).

6 Conclusion

In this paper it has been argued that optimal stopping theory can be used to value

toxic assets with the intention to remove them off banks’ balance sheets. In addition,

we have speculated on the possible returns to the tax payer. Numerical analyses

indicate that a substantial discount is called for. This does not, however, prevent a

high likelihood of a negative return to the tax payer. It should be noted that these

results may be sensitive to the specification of the underlying stochastic process. I

have used a geometric Brownian motion for analytical convenience. This implies,

however, that the growth rate of the profitability of the distressed assets is constant.

One could argue that the growth rate is currently negative, whereas it may turn

positive again in an upturn of the economy. This extension, however, is left for

future research.
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